Skip to main content

MIT scientists develop virus-powered, cell-sized batteries

Miniature devices of the future could be powered by tiny new batteries that are about half the size of a human cell. Researchers from the Massachusetts Institute of Technology (MIT) have come up with an idea to leverage characteristics of viruses to built small power sources that one day could supply the smallest electronics with electricity.

Finding enough space for batteries in shrinking consumer electronics devices are one of the big challenges of hardware designers. But while the available space in today’s consumer electronics still seems to be manageable and evolve over time, there are less convenient solutions available for tiny microdevices such as implantable medical sensors.

In the past, we have seen futuristic announcements of entire nano-power plants that are imagined to be implanted within arteries to use the blood flow to generate electricity where it is needed, but these devices are still very much science fiction. Before these power plants arrive, micro batteries are more likely to be built – and one of the more promising concepts was revealed by MIT researchers today.

To come up with all three critical components of a micro-battery - the anode, cathode and the electrolyte that separates the two – the project group employed soft lithography on “a rubbery material” o create a pattern of tiny posts either four or eight millionths of a meter in diameter. On top of these posts, they then built several layers of two polymers that together act as the solid electrolyte and battery separator.

Viruses that self-assemble atop the polymer layers on the posts were chosen to form the anode: Through a previously known method, the researchers were able to altered the virus’ genes so that it produces protein coats that collect molecules of cobalt oxide to form ultrathin wires – and ultimately the anode.

What the researchers achieved is described as tiny posts, each covered with layers of electrolyte and the cobalt oxide anode: “Then we turn the stamp over and transfer the electrolyte and anode to a platinum structure” that, together with lithium foil, is used for testing,” said MIT professors Paula Hammond. She noted that “the resulting electrode arrays exhibit full electrochemical functionality.”

From TG Daily - Read Full Article


Popular posts from this blog

Iran: A Rummy Guide

To borrow a phrase used for Iraq, there are 'things we now know we don't know.'Back in June 2002, as the Bush administration started pushing hard for war with Iraq by focusing on fears of the unknown—terrorists and weapons of mass destruction—Secretary of Defense Donald Rumsfeld explained that when it came to gathering intelligence on such threats, "absence of evidence is not evidence of absence." Elaborating, Rumsfeld told a news conference: "There are things we know that we know. There are known unknowns; that is to say there are things that we now know we don't know. But there are also unknown unknowns. There are things we do not know we don't know."Now there's a crisis brewing with Iran. And the same basic problem applies: what is known, what is suspected, what can be only guessed or imagined? Is danger clear and present or vague and distant? Washington is abuzz now, as it was four years ago, with "sources" talking of sanctions…